Category: Featured Post

Laboratory Testing of Roofing Samples, Nov. 2022

Laboratory Testing of roofing samples

Steve Smith, P.E., Director of Research and Testing, Principal Engineer

Art is in the eye of the beholder. One person can look at a painting of an apple tree and clearly see the arc of human history portrayed from the deep roots to the solid trunk rising from the ground, to the fruits of technological advancement in the bright shiny apples hanging from the limbs. Another peers at the same painting and sees the sun and the earth working in harmony to produce life giving food for humanity. Someone else observes the magnificent artwork and sees a tree.

Although it may be entertaining to view artwork and try to determine the true meaning or purpose of the piece, you don’t want to hire a roof consultant only to receive an ambiguous report that relies on your own subjectivity to discern their conclusions. If you had only taken roofing samples and sent them to an accredited laboratory that specializes in providing the concrete answers you seek.

Haag Research & Testing is an accredited testing laboratory that specializes in analysis of roofing samples and can provide answers to the following questions.

  • Was the condition on the sample related to hailstone impact?
  • What size of hail can damage the sample?
  • Does the damage extend through the sample or is just the coating damaged?
  • What wind speed would it take to displace these roofing tiles?
  • Did hail-caused dents in the insulation reduce the R-value?
  • Does water leak through a particular feature in the sample?

Our laboratory performs various tests that Haag Engineers have relied on for decades either for developing information used in research papers or for giving specific information on active assignments. The Haag laboratory also performs tests for non-Haag consultants, adjusters, roofing contractors, public adjusters, and manufacturers. Brief descriptions of some of our more popular tests are provided below. You may also visit our website at HaagResearchTesting.com to learn more and to watch testing videos. 

Overview of test setup with Haag IBL-7 ice ball launcher.
impact testing

Frozen solid ice balls are propelled at samples to simulate the effects of hailstone impacts. We use a wide range of ice ball sizes from 1/2 inch to 4 inches in diameter, which allows us to examine the effects of very small hail up to massive hail that can damage most roofing types. Test panels are constructed to replicate as-installed conditions and are typically impacted by simulated hailstones at 90-degree angles to replicate worst case conditions. We can vary the speed and angle of impact as needed. Learn more. 


Desaturation Testing

Bituminous roofing products, including asphalt built-up roofing (ABUR), modified bitumen (mod-bit) roofing, and asphalt shingles are subjected to hot solvent that dissolved the asphalt, allowing the sample reinforcements to be examined for conditions related to impact-caused damage. Learn more. 


single-ply analysis

Single-ply roofing products, including polyvinyl-chloride (PVC), thermoplastic polyolefin (TPO), ethylene propylene diene terpolymer (EPDM), and others are examined visually, tactilely, microscopically, and using back-lighting techniques to determine if there are fractures in the membranes associated with impact forces. Learn more. 

View of panel after Test 5.
Wind Simulation

Test panels are constructed in a manner to simulate the as-installed conditions of roofs covered with shingles, tiles, shakes, slates, or synthetic products. Panels are set at a predetermined angle and wind is blown onto the panels to determine the approximate wind speed it takes to lift, displace, or otherwise damage the product. Various configurations can be evaluated to provide a wide range of possible scenarios. Learn more.

r-Value

The thermal resistance of insulation is measured, and comparisons made between samples with and without hail-caused dents to determine if hail-caused dents resulted in a measurable loss of R-value. Learn more. 

Water Column

Samples containing suspected impact-caused conditions, including displaced surfacing, dents, cracks, etc. are subjected to 6 inches of water and then monitored over a 7-day period. Air pressure cycles are conducted following the 7-day period (with the water still in place) to determine if the roofing sample will leak. Learn more.

Author

Steve Smith, P.E., Director of Research & Testing, Principal Engineer

Steven R. Smith is a Forensic Engineer with Haag Engineering Co., and the Director of Research & Testing. Mr. Smith is an experienced forensic engineer who began his career with Haag more than 24 years ago. He spent seven years working as a Senior Lab Technician while earning a Bachelor of Science in Mechanical Engineering degree from The University of Texas at Arlington. He has been involved with the lab throughout his career, and has been able to leverage his extensive and practical engineering field experience with research and testing projects.

Mr. Smiths areas of expertise include accident reconstruction, mechanical equipment evaluations, code and standards compliance, roofing system evaluations, and fires and explosions. He is a licensed Professional Engineer in Arkansas, Minnesota, Missouri, Oklahoma, Texas, and Wisconsin. He is a member of the American Society of Mechanical Engineers (ASME), Society of Automotive Engineers (SAE), and Pi Tau Sigma National Honor Society. Prior to joining Haag, Mr. Smith was a Petty Officer Second Class in the United States Navy. He trained at the Navy Nuclear Power Training Command Center in Orlando Florida and was stationed on the USS Arkansas (CGN-41), where he maintained reactor and steam plant chemistry, performed radiological controls, and operated mechanical equipment in the propulsion plant.

 

Any opinions expressed herein are those of the author(s) and do not necessarily reflect those of Haag Technical Services, Haag Engineering Co., Haag Education, or parent company, Haag Global, Inc.

Visualizing the Unseen: Modern Premises Liability Analysis, Oct. 2022

VISUALIZING THE UNSEEN:  MODERN PREMISES LIABILITY ANALYSIS

Christopher DeSantis, RA, AIA, CXLT and Benjamin T. Irwin, PE, DFE, CXLT

At its core, forensic architecture and forensic engineering can simply be thought of as the application of facts and science in answering technical questions posed by a lay audience.  Similarly, premises liability evaluation can simply be thought of as a technical evaluation of the interactions between human beings and the constructed environment around them, in response to a specific incident where a specific constructed condition is alleged to have caused injury to a specific person.  Seems simple, right?

  • Step 1:  Analyze the facts.
  • Step 2:  Apply the science(s) to the facts.

Traditionally, premises liability analysis has focused largely on compliance of the constructed conditions with codes and industry norms.  Again, simple right?

  • Step 1:  Determine the applicable codes and industry norms.
  • Step 2:  Evaluate compliance of the constructed conditions.
Re-assembled jigsaw pieces

But what happens when the facts are unclear, or even partially contradictory?  What if the facts are unknown?  Similarly, how do you analyze compliance, if you can’t determine the age of the constructed conditions?  These answers require a more modern, multi-faceted, and multi-disciplinary approach.

We can start with a simple idea:

Nearly everything leaves evidence somewhere, and there are many more opportunities to technically investigate a given fact pattern now than there have ever been before.

This is modern premises liability analysis, where the key is to reconstruct a given incident to the greatest extent possible, either physically in reality, in a virtual manner, or in some combination of the two.  When an incident can be better visualized, even if the conditions have since changed, it can become much simpler to see the facts, codes, standards, and science more clearly.

Consider being faced with a fact pattern involving a fall event on a roadway construction site, where the construction site is long gone.  There were no witnesses to the incident, limited photos from the time of the incident, and the available testimony created a he-said, she-said situation that didn’t seem to make sense in the context of the other available information.  A new first step is needed, to verify the facts before analyzing them.

 

Limited construction zone protection after the incident.
Photo from the time of the incident, with limited foreground information, but broader background information.

As a part of this fact pattern, construction staging plans were provided piecemeal and in an incomplete manner, along with out-of-sequence and partially missing/redundant daily field logs.  Re-assembling these jigsaw pieces, revealed verifiable extents of the construction zone on the date of the incident, including what construction equipment was on site at the time of the incident.  It also revealed the adjacent streets on which the same contractor had performed similar work.

While the dated street level imagery did not indicate the exact conditions present within the construction zone at the time of the incident, it did indicate the construction zone protection methods utilized by the contractor elsewhere on the same project on the adjacent streets.  A repetitive pattern of construction zone protection emerged that aligned with only one portion of the testimony, but not the other.  Certain elements of the same repetitive pattern were also evident in the limited photos taken from the time of the incident.

The dated street level imagery near the construction zone showed limited construction equipment, surrounded by limited construction zone protection, which more closely aligned with the contradictory testimony, but was actually from a different point in time.  Combining all of this evidence using a multi-faceted approach, the conditions actually present at the time of the incident were reconstructed, such that these unseen conditions could be visualized clearly utilizing verifiable facts.

It is not always this complicated, though.  Sometimes, a simple review and enhancement of the video surveillance footage from an incident will provide the fact verification needed.  There are also now some interior street level images being recorded inside of buildings.  Both of these modern technologies can also be used as part of a multi-disciplinary premises liability evaluation approach, revealing details that could not be easily seen before.

Post-incident conditions
Pre-incident conditions shown in interior street level image.

Consider another example, one where the video surveillance footage brought confusion, rather than clarity.  This basic fact pattern suggested that the wrong incident location was investigated by a property owner after an incident had occurred at a known location somewhere else.  The video surveillance footage captured the incident in a verifiable location, as well as the investigation conducted at that same location, but the car shown in the photos from the investigation didn’t match the car allegedly present at the time of the incident.  So, what created this discrepancy?

Photo from the time of the incident, allegedly showing the wrong car.
Enhanced video showing a change in the car parked next to the incident location between the time of the incident and the time of the investigation.

The key to understanding what happened was to visualize the conditions present at the different points in time, as viewed from the perspectives of the different parties at those different times.  Some constructed environments are dynamic in nature, with conditions that change frequently.  Combining review and enhancement from all of the video surveillance footage (not just the two segments referenced earlier), with review of the designed site features, in combination with in-field measurements, along with analysis of the changes in the dynamic environment over time, the conditions present at the time of the incident could again be reconstructed virtually, making the unseen clear to visualize.

In each case, the early preservation of evidence was key.  Early engagement of experts can also help to bring clarity to additional unseen, but verifiable, facts early on in the claims and/or litigation processes, improving the potential for early, informed decision-making.  The evidence is often out there somewhere, and our task, together, is to locate, verify, and analyze it in a multi-faceted manner, utilizing our arsenal of modern tools.  

What can we bring into clearer focus for you?

Authors

Christopher DeSantis is an accomplished and credentialed Architect with a solid career record of innovative and outstanding architectural design. Prior to joining Haag, Christopher worked as an architect, collaborating with structural engineers in design and preparation of project details, wall sections, and construction documents. He conducted detailed forensic investigations and structural integrity inspections, documented in field reports, in addition to performing contract administration and working as project manager for multiple projects. He also worked as a Graduate Teaching Assistant, an intern/builder at SouthCoast DesignBuild, and as a construction laborer and mason. His project experience includes investigation and restoration of multiple school campuses and commercial buildings. He has designed many large condominium projects, multi-use developments, government buildings, retail and restaurants, and commercial buildings.

Benjamin T. Irwin is a Forensic Engineer with Haag Engineering Co. With dual degrees in architecture and civil engineering from Lehigh University, and over 20 years of diverse professional experience, Mr. Irwin provides a wide array of engineering, design, construction, and safety consulting and expert witness litigation support services.  He is a registered Professional Engineer (P.E.) in 23 jurisdictions and is recognized as a Model Law Engineer (MLE) by the National Council of Examiners for Engineering and Surveying (NCEES).  He is also a Board-certified Senior Member of the National Academy of Forensic Engineers (NAFE), holding the designation of Diplomate Forensic Engineer (DFE).  He had been qualified for, and testified within, local, state and Federal courts, with retentions from both plaintiffs and defendants.

 

Any opinions expressed herein are those of the author(s) and do not necessarily reflect those of Haag Technical Services, Haag Engineering Co., Haag Education, or parent company, Haag Global, Inc.

Real-Time, Interactive Storm Data: Haag Hurricane GeoPortal, Sept. 2022

HURRICANE GEOPORTAL: real-time, INTERACTIVE storm data

According to the National Oceanic and Atmospheric Administration’s (NOAA) annual mid-season update issued by the Climate Prediction Center, atmospheric and oceanic conditions still favor an above-normal 2022 Atlantic hurricane season. NOAA’s update to the 2022 outlook — which covers the entire six-month hurricane season that ends on November 30th — calls for 14-20 named storms (winds of 39 mph or greater), of which 6-10 could become hurricanes (winds of 74 mph or greater). Of those, 3-5 could become major hurricanes (winds of 111 mph or greater). NOAA provides these ranges with a 70% confidence.

The updated 2022 Atlantic hurricane season probability and number of named storms.

Considering this outlook for 2022 as well as very active recent hurricane seasons, it is imperative for businesses and individuals to have quick and reliable access to key data points. Haag believes that there is no such thing as too much data if the data is organized, relevant, and easy to access. The Haag Hurricane Geoportal checks these boxes and much more. It gives power to the user to view multiple datasets, interact with the data, and decide which information is most valuable to them. The Haag Hurricane Geoportal utilizes a map-based interface to provide on-demand access to several useful data sources including:

  • Real-time data for active and recent storms from the current hurricane season
  • Detailed storm data from the past three hurricane seasons with options to filter data based on storm name
  • Wind speeds and pressure at observed positions along a storm’s path
  • Direct access to official National Hurricane Center (NHC) storm reports
  • Radar and aerial imagery data for storms
  • Access to local climatological data reports
  • NEXRAD radar mosaics for current and past storms
Satellite imagery, observed track and positions, forecasted track and positions of Hurricane Ida, August 2021.
Before and after aerial imagery showing damages caused by Hurricane Laura, August 2020.

The Haag Hurricane Geoportal provides timely access to reliable data in one easy-to-use platform. While we can’t stop severe weather from happening, we can create tools to help make proactive planning and recovery much easier. The Hurricane Geoportal is your one-stop shop for keeping an eye on the data for the eye of the storm.

If you would like to learn more about the Haag Hurricane Geoportal, please contact Marcie Deffenbaugh, GIS Services Manager, to view a demo or for more information. Haag’s Hurricane Geoportal is available via subscription– one year subscription for $50/month or opt for a month-to-month subscription for $75/month.

View of observed tracks and positions, as well as forecasted tracks, positions, and error cones of active storms as of 10:00 AM EST on 9/7/2022.
View of Hurricane Kay with forecasted track, position, and error cone as of 10:00 AM EST on 9/7/2022.

Marcie Deffenbaugh is the Manager of GIS Services for Haag Technical Services, a division of Haag Global, Inc.  In this role, Ms. Deffenbaugh oversees initiatives related to GIS planning, system design, and system administration. She also manages a staff of GIS technicians, analysts, cartographers, and project administrative assistants who provide data validation and project management services for oil and gas clients. As the primary liaison between the client management teams and Haag Technical Services personnel, Ms. Deffenbaugh provides technical consulting services on a regular basis.

___

Any opinions expressed herein are those of the author(s) and do not necessarily reflect those of Haag Technical Services, Haag Engineering Co., Haag Education, or parent company, Haag Global, Inc.

Congratulations Daniel Behrens, Promoted to Principal Engineer

Haag is very pleased to announce that Daniel Behrens, P.E., has been promoted to Principal Engineer! Based in Minneapolis, Dan Behrens has been a Haag Engineer for 13 years, with 24 years in the engineering field. He has been instrumental in serving Haag’s clients in Minneapolis, the Midwest, and beyond. Dan is a prolific course developer and a reliable ‘go-to’ engineer who is always willing to mentor new engineers and take on challenging assignments. Congratulations on this well-deserved promotion Dan!

Welcome Alex DeGroot, P.E., New Engineer in Charlotte!

Haag Welcomes Alex DeGroot, P.E., New Engineer in Charlotte!

“We are pleased to welcome Alex DeGroot to our Haag team,” said Justin Kestner, CEO. “Mr. DeGroot brings practical structural engineering expertise and will help serve Haag’s clients in North and South Carolina and beyond.”

Based out of Charlotte, Alex is a licensed professional engineer with seven year’s experience. He previously worked as a structural engineer designing wood, steel, masonry, CFS, FRP and reinforced concrete structures. He evaluated existing conditions, identified causes of problems, and provided engineered solutions. He then coordinated with clients, steel fabricators/erectors, and general contractors to identify potential issues and implement cost effective solutions, including developing solutions for atypical field issues with multiple constraints and limitations.

Mr. DeGroot earned a Master of Structural Engineering from Southern Illinois University and a Bachelors of Science in Civil Engineering from Bradley University. He is a licensed P.E. in North Carolina. 

Notable projects include–

  • Goddard School, Chicago- coordinated with the architect from design to construction administration for the $5 million three-story private school
  • Illinois State Toll Highway Authority Contract I-18-4427, Chicago- designed performance-based, ground-mounted and structure-mounted precast concrete noise abatement walls for the $58 million contract
  • SoFi Stadium, Los Angeles– analyzed six construction hoists for the $5 billion stadium using atypical tie-off methods and custom connections.

Primary Areas of Consulting

  • Structural Evaluations
  • Commercial, industrial, and residential buildings 
  • Foundation and wall failures
  • Building code compliance
  • Construction hoists
  • Noise abatement walls
  • Building Envelope Evaluations
  • Moisture intrusion
  • General Civil Engineering
  • Drainage and flooding
  • Wind Engineering and Related Storm Effects
  • Structural damage
  • Roofing systems 
  • Quality of manufacture and application of roofing
  • Cause, nature, and extent of damage, particularly from hail and wind; and remaining service life

For more information or to contact Mr. DeGroot, email or call 800.527.0168.

Electrical Surge or Lightning? – May 2022

Electrical Surge or Lightning?

When electrical damage occurs, determining the cause of the event is an important topic for insurance claims. Electrical damage can occur from lightning events, electrical surge from power utilities, water contact, fire events or other electrical malfunctions in the equipment.

Power outages were widespread during the winter storm in 2021.  A power outage can lead to an electrical surge event when power is restored to the home. A safe method to avoid electrical surge damage to equipment is to unplug electrical appliances and devices during a power outage. Turning off circuit breakers is an additional protection to avoid electrical surge damage when power is restored. Power surge suppressors are also a cost-effective addition to electrical distribution panels. Electrical surge can be easier to classify if lightning is not present in the area.

Lightning is a naturally occurring event that can cause severe electrical damage to electrical equipment. Lightning events are well documented occurrences with data measured by the National Lightning Detection Network and other companies. Each network uses hundreds of sensors placed throughout the United States and adjacent countries to collect their data.

Lightning strikes can be classified in a few different ways. A cloud-to-ground lightning strike(stroke) is an electrical discharge between the atmosphere and the ground.  A cloud-to-cloud lightning event is not typically recorded by lightning detection networks. Lightning stroke data includes the date/time, latitude/longitude, peak amplitude, polarity, and determination of whether it was a cloud-to-ground or cloud-to-cloud strike.

A search diameter between 1 to 15 miles is available for most lightning report services. Most lightning network data can detect a strike within seconds of the event occurring with a near 100 percent detection of thunderstorms.  If a lightning detection network report shows no lightning in that location on the day in question that information is very accurate.

For address-specific applications of lightning data, the ability to detect a thunderstorm is not the same thing as detecting every single stroke that contacts the ground.  All networks have a flash detection efficiency of 90-95 percent or greater for cloud-to-ground lightning.  In general, the networks may not record the smallest magnitude lightning strikes accurately.  In addition, during intense thunderstorms when there are many strikes, the sensors can be processing data and resetting after a flash when the next flash occurs, and they may not see the second flash.

All US lightning networks state their median location accuracy is about 1/8 mile.  A large campus property doesn’t generally affect the interpretation of results.  However, for homes in a heavily populated area the 1/8-mile radius around the reported strike point could encompass a number of separate houses. So, while there is a 95 percent chance that the lightning actually struck within approximately 1/8 mile of the pinpoint shown on the data map that might not be at the house selected as the center of the data area.  This image shows a point data map with a 10-mile search radius.

The accuracy of the location is dependent upon the number of sensors that “see” the flash and their locations.  The greater number of sensors that detect a stroke, the more accurately that stroke will be plotted. The fewer sensors that detect the stroke will have a larger error and this will be visualized with a more elliptical or oval shape.  This is illustrated by comparing the point data on the Lightning Stroke Map above with the same data as presented on the Confidence Ellipses map below.  So rather than the strike point always being within 1/8 mile of the point shown on the map in the data report, the actual strike point could be several miles away in the worst cases.  These ellipses have a 99 percent of encompassing the actual strike point.  This image shows the same point data map with the 10 mile search radius with the 99 percent confidence ellipses shown.  Note the large size of some of the ellipses.

In summary, a lightning data report is very accurate when evaluating lightning presence in the area of interest on the date and time of interest.  However, the exact location of the strike may not be as obvious as the reports present.  In these cases, it is important to use information from the scene, including physical evidence and expert evaluation, to determine if lightning actually struck the property or caused damage at the property.


ANDREW LYNCH P.E., CFEI, CVFI, is an Engineer at Haag Global. He has provided expert testimony in cases involving electrical and mechanical damage. Mr. Lynch has taught numerous training sessions on Electrical Engineering to adjusters. He has also presented at various conferences and claims association meetings. Prior to joining Haag, Mr. Lynch was primarily involved in forensic engineering for many years. He also has prior experience in the design and software of robotics, oilfield equipment and medical devices.


Any opinions expressed herein are those of the author(s) and do not necessarily reflect those of Haag Global, Inc., Haag Canada, or any Haag companies.